av大尺度一区二区三区-亚洲国产成人最新精品-国产v片在线播放免费无码-天天摸夜夜添狠狠添婷婷-久久国产色av免费看

Biocomputing assisted drug screening

Molecular docking

Molecular docking is a technical method to simulate the interaction between ligand small molecules and receptor biological macromolecules based on the "lock key principle" of ligand receptor interaction. The interaction between ligand and receptor is a process of molecular recognition, mainly including electrostatic interaction, hydrogen bonding interaction, hydrophobic interaction, van der Waals interaction, etc. Through calculation, the combination mode and affinity between the two can be predicted. Yanjin Bio provides professional molecular docking services and a complete set of virtual drug screening services, which can help customers discover the ligand protein interaction mode, explain biological experiments, discover new active compounds and provide guidance for compound optimization. It covers protein preparation, active site discovery, protein flexible conformation exploration, ligand conformation database preparation, docking result analysis and evaluation, small molecule compound library preparation, pharmacophore modeling and screening, manual experience screening, etc.


Molecular docking applications:
   

1. To explore the specific mode of action and binding configuration of small and large drug receptors;

2. Screening the lead drugs that can bind to the target;

3. Explain the reason why drug molecules produce activity;

4. To guide rational optimization of drug molecular structure.

Molecular docking is one of the important methods of molecular simulation. Its essence is the recognition process between two or more molecules, involving the spatial matching and energy scoring between molecules. According to the energy ranking, the preliminary optimal structure and binding mode between molecules are finally obtained.


 

分子對接1


The docking software between "protein ligand" is complex, and Yanjin biological analysis software mainly includes Autodock, Vina, Dock, etc.

分子對接2
 

       

Molecular docking technology has a low threshold but is difficult to master, and it is easy to obtain false positive results. Accurate molecular docking results can not be separated from the knowledge and technology reserves and long-term first-line experience accumulation. Choose Yanjin Biology to let professional people do professional things. As long as you provide relevant biological information, we can help you find a reasonable combination mode and result analysis.

With the development of X-ray diffraction and NMR technology, a large number of three-dimensional crystal structures of target proteins have been resolved, which can not be directly used for molecular docking. In fact, in the process of protein parsing, there are often various errors, such as the loss of atoms, the incompatibility between the secondary sequence and the three-dimensional structure of the protein, which will affect the accuracy of docking, especially when these errors appear in the binding pocket of the ligand. Therefore, these errors must be corrected before docking. Both X-Ray and NMR can only determine the position of heavy atoms without the position information of hydrogen atoms. Before docking, hydrogenation protonation is required to mark the local electrical properties, so that it can be used for docking. After preparing the protein structure, it is necessary to find the active sites for drug molecule binding. The topology of the protein surface is very complex and diverse, and the physical and chemical properties are also extremely diverse. Which sites are the binding sites of small molecules of drugs, and can inhibit or activate the activity of the protein? In fact, there must be some corresponding research and annotation on the biological function of the target protein. In most cases, proteins also perform their biological functions by binding to natural ligands (macromolecules or small molecules). The binding sites of these natural ligands are likely to be the binding sites of their inhibitors or agonists. In the absence of these corresponding biological annotations, we can also use computational analysis to investigate the protein surface from multiple perspectives, such as topology, physical and chemical properties, to find appropriate binding sites, and combine with experimental information to finally determine the active sites.

As we all know, in the process of protein ligand interaction, there is an induced fit effect, and its conformation will change accordingly during the binding process. An accurate docking must take into account the flexibility of the receptor and ligand. Although many of the current software tools claim to be able to perform flexible docking of receptors, there are relatively large limitations in the methods, which may only be used to optimize the conformation of side chains through force field optimization and other methods. Yanjin Biology can investigate several different conformations that may exist in the protein by means of computer simulation. These conformations can be used as the starting point for docking to consider the flexibility of the protein more. The other flexibility is the flexibility of the ligand. Although the software will automatically consider the flexibility of the ligand during the docking process, such as rotating some rotatable keys. However, the generation of this conformation is also relatively limited, for example, the conformation of saturated rings cannot be fully considered. We can use conformational search, saturated ring conformational search and other methods to traverse the dominant conformations of ligands as much as possible to serve as the docking conformation library, so as to improve the accuracy! After docking, it is generally sorted by combining the score of free energy. Each ligand may have a variety of binding conformations. We select the most likely binding mode through comprehensive evaluation methods, such as the scoring of binding free energy, molecular stress energy, etc., and combine artificial judgment to find a truly reasonable binding mode.




主站蜘蛛池模板: 亚洲精品国产成人99久久| 18禁免费吃奶摸下激烈视频| 国产爱豆剧传媒在线观看| 乱子轮熟睡1区| 久久av高清无码| 欧美成人精品高清视频在线观看| 精品无码专区久久久水蜜桃| 女人大荫蒂毛茸茸视频| 性xxxxx大片免费视频| 国产精品久久久久不卡无毒| 18禁美女裸体无遮挡免费观看国产 | 免费久久人人爽人人爽av| 亚洲精品乱码8久久久久久日本 | 精品一区二区三区在线观看视频| 夜夜高潮夜夜爽国产伦精品| 精品女同一区二区| 欧美人妻日韩精品| 欧美人与动牲交大全免费| 久久亚洲精品无码观看网站| 高清无码午夜福利视频| 亚洲国产成人精品无码区四虎| 男人和女人在床的app| 伊人亚洲综合网色| 99re66久久在热青草| 九九热线视频精品99| 一本久道久久综合狠狠爱| 在线观看国产一区二区三区| 人妻人人妻a乱人伦青椒视频| 久久一本人碰碰人碰| 无码av中文字幕久久专区| 久久精品成人免费观看| 亚洲色中文字幕在线播放| 无码国内精品久久人妻蜜桃| 好吊妞无缓冲视频观看| 一本一道av中文字幕无码| 大帝a∨无码视频在线播放| 少妇内射视频播放舔大片| 亚洲精品国偷自产在线99正片| 亚洲中文字幕av无码区| 2021无码天堂在线| 国产精品久久久一区二区三区|